Logo Search packages:      
Sourcecode: pan version File versions

sorted-vector.h

/* STL-conforming "sorted vector" container
 *
 * (C) 2002 Martin Holzherr (holzherr@infobrain.com). All rights reserved.
 *
 * Permission is granted to use, distribute and modify this code provided that:
 *    this copyright notice appears,
 *    
 * The author welcomes any suggestions on the code or reportings of actual
 * use of the code. Please send your comments to holzherr@infobrain.com.
 *
 * The author makes NO WARRANTY or representation, either express or implied,
 * with respect to this code, its quality, accuracy, merchantability, or
 * fitness for a particular purpose.  This software is provided "AS IS", and
 * you, its user, assume the entire risk as to its quality and accuracy.
 *
 * Created:             November 19th, 2002
 * Last modified: November 27th, 2002 
                                    (changed namespace from std to codeproject;
                                    uses template member functions for MSCVER>=1300)
                                                
 */

#ifndef SORTED_VECTOR_
#define SORTED_VECTOR_

#include <algorithm>
#include <vector>
#include <utility>
#include <functional>

namespace pan
{
        /**
         * std::set implemented as a sorted vector.
         *
         * This can give a significant memory improvement over std::set,
         * which is implemented as a tree.  The tradeoff is that insertion
         * and removal is slow, so this is best used on sets whose contents
         * rarely change.
         * 
         * This class was written by Martin Holzherr and is in the public domain.
         */
      template<class K, bool bNoDuplicates= false,class Pr = std::less<K>, class A = std::allocator<K> >
00044       class sorted_vector {
public:
      typedef sorted_vector<K,bNoDuplicates,Pr,A> Myt_;
      typedef std::vector<K,A>            Cont;
      typedef typename Cont::allocator_type     allocator_type;
      typedef typename Cont::size_type                size_type;
      typedef typename Cont::difference_type    difference_type;
      typedef typename Cont::reference                reference;
      typedef typename Cont::const_reference    const_reference;
      typedef typename Cont::value_type         value_type;
    typedef K                                   key_type;
      typedef typename Cont::iterator                 iterator;
      typedef typename Cont::const_iterator     const_iterator;
    typedef Pr                                  key_compare;
    typedef Pr                                  value_compare;

      typedef typename Cont::const_reverse_iterator
                                                      const_reverse_iterator;
      typedef typename Cont::reverse_iterator   reverse_iterator;

    typedef std::pair<iterator, iterator> Pairii_;
      typedef std::pair<const_iterator, const_iterator> Paircc_;
    typedef std::pair<iterator, bool> Pairib_;
      explicit sorted_vector(const Pr& pred = Pr(),const A& al = A())
            :key_compare_(pred),vec_(al){}
      template<class It>
      sorted_vector(It first, It beyond, 
                              const Pr& pred = Pr(),const A& al = A())
            :key_compare_(pred),vec_(first,beyond,al)
        {stable_sort();}
      sorted_vector(const Myt_& x)
            : key_compare_(x.key_compare_), vec_(x.vec_)
        {}
    ~sorted_vector()                {}
    Myt_& operator=(const Myt_& x) {vec_.operator=(x.vec_);
                                     key_compare_= x.key_compare_;
                                     return *this;}
    Myt_& operator=(const Cont& x){vec_.operator=(x);
                                    sort();return *this;}
            
      void                    reserve(size_type n)    {vec_.reserve(n);}
      iterator                begin()                             {return vec_.begin(); }
      const_iterator          begin() const                 {return vec_.begin(); }
    iterator                  end()                         {return vec_.end();}
    const_iterator            end() const                   {return vec_.end();}
    reverse_iterator    rbegin()                      {return vec_.rbegin();}
    const_reverse_iterator rbegin() const   
                                                                        {return vec_.rbegin();}

    reverse_iterator rend()                                 {return vec_.rend();}
    const_reverse_iterator rend() const     
                                                                        {return vec_.rend();}


    size_type size() const                                  {return vec_.size();}
    size_type max_size() const                              {return vec_.max_size();}
    bool empty() const                                      {return vec_.empty();}
    A get_allocator() const                                 {return vec_.get_allocator();}
    const_reference at(size_type p) const       {return vec_.at(p);}
    reference at(size_type p)                         {return vec_.at(p);}
      const_reference operator[](size_type p) const
                                                                        {return vec_.operator[](p);}
            
      reference operator[](size_type p)               {return vec_.operator[](p);}
    reference front()                                       {return vec_.front();}
      const_reference front() const                   {return vec_.front();}
    reference back()                                        {return vec_.back();}
    const_reference back() const                      {return vec_.back();}
    void pop_back()                                               {vec_.pop_back();}

    void assign(const_iterator first, const_iterator beyond)                              
                                                                        {vec_.assign(first,beyond);}
      void assign(size_type n, const K& x = K())
                                                                        {vec_.assign(n,x);}
/*insert members*/
   Pairib_ insert(const value_type& x)
            {
            if(bNoDuplicates){
                iterator p= lower_bound(x);
                if(p==end()||key_compare_(x,*p)){
                    return Pairib_(InsertImpl_(p,x),true);
                }else{
                    return Pairib_(p,false);
                }
            }else{
                iterator p= upper_bound(x);
                return Pairib_(InsertImpl_(p,x),true);
            }
        }
   iterator insert(iterator it, const value_type& x)//it is the hint
        {
           if(it!=end() ){
               if(bNoDuplicates){
                   if(key_compare_(*it,x)){
                       if((it+1)==end()||KeyCompare_Gt_(*(it+1),x)){//use hint
                            return InsertImpl_(it+1,x);
                       }else if(KeyCompare_Geq_(*(it+1),x)){
                           return end();
                       }
                    }
               }else{
                   if(  KeyCompare_Leq_(*it,x)
                                 &&((it+1)==end()||KeyCompare_Geq_(*(it+1),x))){
                       return InsertImpl_(it+1,x);
                   }
               }
           }
           return insert(x).first;
        }
  template<class It>
      void insert(It first, It beyond)
    {
        size_type n= std::distance(first,beyond);
        reserve(size()+n);
        for( ;first!=beyond;++first){
            insert(*first);
        }
    }
    iterator erase(iterator p)          {return vec_.erase(p);}
      iterator erase(iterator first, iterator beyond)
                                        {return vec_.erase(first,beyond);}
    size_type erase(const K& key)     
        {
            Pairii_ begEnd= equal_range(key);
            size_type n= std::distance(begEnd.first,begEnd.second);
            erase(begEnd.first,begEnd.second);
            return n;
        }
    void clear()                        {return vec_.clear();}
            
    bool Eq_(const Myt_& x) const      
            {return (size() == x.size()
            && std::equal(begin(), end(), x.begin())); }
      bool Lt_(const Myt_& x) const
        {return (std::lexicographical_compare(begin(), end(),
                                                            x.begin(), x.end()));}
      void swap(Myt_& x)
        {vec_.swap(x.vec_);std::swap(key_compare_,x.key_compare_);}
        
      friend void swap(Myt_& x, Myt_& Y_)
            {x.swap(Y_); }

      key_compare key_comp() const              {return key_compare_; }
    value_compare value_comp() const            {return (key_comp()); }

        template<class KeyType> iterator find (const KeyType& k)
          { iterator p(lower_bound(k)), e(end()); return (p==e||key_compare_(k,*p))?e:p; }
        template<class KeyType> const_iterator find (const KeyType& k) const
          { const_iterator p(lower_bound(k)), e(end()); return (p==e||key_compare_(k,*p))?e:p; }

      size_type count(const K& k) const
            {Paircc_ Ans_ = equal_range(k);
        size_type n = std::distance(Ans_.first, Ans_.second);
        return (n); }

        template<class KeyType> iterator lower_bound (const KeyType& k)
          { return std::lower_bound(begin(), end(), k, key_compare_); }
        template<class KeyType> const_iterator lower_bound (const KeyType& k) const
          { return std::lower_bound(begin(), end(), k, key_compare_); }
        template<class KeyType> iterator upper_bound (const KeyType& k)
          { return std::upper_bound(begin(), end(), k, key_compare_); }
        template<class KeyType> const_iterator upper_bound (const KeyType& k) const
          { return std::upper_bound(begin(), end(), k, key_compare_); }
        template<class KeyType> Pairii_ equal_range (const KeyType& k)
          { return std::equal_range(begin(), end(), k, key_compare_); }
        template<class KeyType> Paircc_ equal_range (const KeyType& k) const
          { return std::equal_range(begin(), end(), k, key_compare_); }

/*functions for use with direct std::vector-access*/
    Cont& get_container()
        {return vec_;}
    void sort()//restore sorted order after low level access 
        {   std::sort(vec_.begin(),vec_.end(),key_compare_);
            if( bNoDuplicates ){
                vec_.erase(Unique_(),vec_.end());
            }
        }
    void stable_sort()//restore sorted order after low level access 
        {   std::stable_sort(vec_.begin(),vec_.end(),key_compare_);
            if( bNoDuplicates ){
                erase(Unique_(),end());
            }
        }   
protected:
    iterator Unique_()
        {   iterator front_= vec_.begin(),out_= vec_.end(),end_=vec_.end();
            bool bCopy_= false;
            for(iterator prev_; (prev_=front_)!=end_ && ++front_!=end_; ){
                if( key_compare_(*prev_,*front_)){
                    if(bCopy_){
                        *out_= *front_;
                        out_++;
                    }
                }else{
                    if(!bCopy_){out_=front_;bCopy_=true;}
                }
            }
            return out_;
        }
    iterator InsertImpl_(iterator p,const value_type& x)
        {return vec_.insert(p,x);}
    bool KeyCompare_Leq_(const K& ty0,const K& ty1)
        {return !key_compare_(ty1,ty0);}
    bool KeyCompare_Geq_(const K& ty0,const K& ty1)
        {return !key_compare_(ty0,ty1);}
    bool KeyCompare_Gt_(const K& ty0,const K& ty1)
        {return key_compare_(ty1,ty0);}

    key_compare         key_compare_;
    Cont                vec_;
};


template<class K,bool bNoDuplicates,class Pr, class A> inline
      bool operator==(const sorted_vector<K, bNoDuplicates,Pr,A>& x,
                        const sorted_vector<K, bNoDuplicates,Pr,A>& Y_)
      {return x.Eq_(Y_); }
template<class K,bool bNoDuplicates,class Pr, class A> inline
      bool operator!=(const sorted_vector<K, bNoDuplicates,Pr,A>& x,
                        const sorted_vector<K, bNoDuplicates,Pr,A>& Y_)
      {return !(x == Y_); }
template<class K,bool bNoDuplicates,class Pr, class A> inline
      bool operator<(const sorted_vector<K, bNoDuplicates,Pr,A>& x,
                        const sorted_vector<K, bNoDuplicates,Pr,A>& Y_)
      {return x.Lt_(Y_);}
template<class K,bool bNoDuplicates,class Pr,class A> inline
      bool operator>(const sorted_vector<K, bNoDuplicates,Pr,A>& x,
                        const sorted_vector<K, bNoDuplicates,Pr,A>& Y_)
      {return Y_ < x; }
template<class K,bool bNoDuplicates,class Pr, class A> inline
      bool operator<=(const sorted_vector<K, bNoDuplicates,Pr,A>& x,
                        const sorted_vector<K, bNoDuplicates,Pr,A>& Y_)
      {return !(Y_ < x); }
template<class K, bool bNoDuplicates,class Pr,class A> inline
      bool operator>=(const sorted_vector<K, bNoDuplicates,Pr,A>& x,
                        const sorted_vector<K, bNoDuplicates,Pr,A>& Y_)
      {return (!(x < Y_)); }
}

#endif

Generated by  Doxygen 1.6.0   Back to index